B9 - numerical differentiation

finite difference numerical integrator

dfdtf(t+Δt)f(t)Δt x(t+Δt)x(t)Δtf(x)x(t+Δt)x(t)+Δtf(x)

different schemes and errors

difference schemes.png|500
image: Tristanevanslee

f(t±Δt)f(t)±dfdtΔt+Δt22!d2fdt2±Δt33!d3fdt3++O(Δt4) dfdtf(t+Δt)f(t)Δt=dfdt+d2fdt2Δt2!+d3fdt3Δt23!+error dfdtf(t+Δt)f(t)Δt=dfdtd2fdt2Δt2!+d3fdt3Δt23!+error f(t+Δt)f(tΔt)=2[dfdtΔt+Δt33!d3fdt3++O(Δt5)]dfdtf(t+Δt)f(tΔt)2Δt=dfdt+Δt23!d3fdt3++O(Δt5)

x1 - code for difference schemes comparison

solved 1.png|500

second derivative

d2fdt2=f(t+Δt)f(t)Δt f(t+Δt)+f(tΔt)=2f(t)+Δt2f(x)+O(t4)f(t)f(t+Δt)2f(t)+f(tΔt)Δt2+O(Δt2) dfdx={forward difference fpr x1central difference for middlebackward difference for xN

taking the step to zero

dfdt=f(t+Δt)f(tΔt)+2er2Δt+O(t2)=f(t+Δt)f(tΔt)2Δt+erΔt+O(t2) |error|erΔt+Δt2m3!=Emax(Δt)m=max(f) for (tΔt) to (t+Δt) Emax(Δt)=0Δt=33erm

numerical intefr

numerical integration of ODEs