B6b - finite difference

ykj+1ykjΔt+v2Δx(yk+1jyk1j)=0 ykj=m=0M1exp(i2πΔxLmk)y¯mj

where, y¯mj are fourier amplitudes of each mode, m

y¯mj+1=y¯mj[1vΔt2Δx(eimq0eimq0)]=y¯mj[1vΔtΔxisin(mq0)] |y¯mj+1y¯mj|=1+(vΔtΔx)2sin2(mq0)

damping

yt+vyxγ2yx2=0 y¯mj+1=y¯mj[1vΔt2Δx(eimq0eimq0)+γΔt(Δx)2(eimq0+eimq02)]|g|=[1+2γΔt(Δx)2(cos(mq0)1)]2+(vΔtΔx)2sin2(mq0)

Screenshot 2025-12-03 094659.png|500
image: B Hnat, lecture notes

cosx112x2sinxx|g|1+(mq0)2[(vΔtΔx)22γΔt(Δx)2] 2γv2Δt