B4 - discretising heat equation PDEs

lax equivalence theorem

a consistent finite difference method applied to a well-posed linear initial value problem is convergent if and only if it is stable

yt=α2yx2ykj+1ykjΔt=αyk+1j+yk1j2ykj(Δx)2ykj+1=ykj+αΔt(Δx)2[yk+1j+yk1j2ykj] ykj=m=0M1exp(i2πΔxLmk)y¯mj

where, y¯mj are fourier amplitudes of each mode, m

ykj=exp(imq0k)y¯mj

where, q0=2πΔxL

exp(imq0k)y¯mj+1=exp(imq0k)y¯mj+αΔt(Δx)2[exp(imq0(k+1))y¯mj+1+exp(imq0(k1))y¯mj2exp(imq0k)y¯mj]y¯mj+1=y¯mj[1+αΔt(Δx)2(eimq0+eimq02)]=y¯mj[1+2αΔt(Δx)2(cos(mq0)1)] g=1+2αΔt(Δx)2[cos(mq0)1]=14αΔt(Δx)2sin2(mq02) m=L2Δx ykj=exp(imq0k)y¯mj=iπkyk+1j=exp[im(k+1)q0]y¯mj=exp[iπ(k+1)]