B11 - numerical integration of ODEs

x˙=Axx˙=f(x,t)

where, x represents the system state, and f may be a non linear function (vector field)

forward euler method

dx(t)dtx(t+Δt)x(t)Δtf(x(t))x(t+Δt)x(t)+Δtf(x(t)) xk+1=xk+Δtf(xk) xk+1=xk+ΔtAxk=(I+ΔtA)xk

where, A is a matrix, and I is the identity matrix

backward euler method

xk+1xkΔtx˙(tk+1)=f(xk+1)xk+1=xk+Δtf(xk+1) xk+1=xk+ΔtAxk+1=(I+ΔtA)1xk

motion

x¨=ω02xγx˙ x˙=vv˙=γvω02x ddt[xv]=[01ω02γ][xv]