PX285 - L3 - potential flows involving cylinders and aerofoils

ϕ=U0x+acosθr ϕ=U0r(l+R2r2)cosθ

where, R2=a/u0, u0 is the speed at a large distance from dipole

u:ur=ϕr=U0(1R2/r2)cosθuθ=1rϕθ=U0r(1+R2/r2)sinθ

PX285 - K5a - potential flows involving cylinders and aerofoils.png|500

PX285 - K5a - potential flows involving cylinders and aerofoils-1.png|500

ur=0uθ=2U0sinθuθ,max=2U0 at θ=π2,π2

PX285 - K5a - potential flows involving cylinders and aerofoils-2.png|500

P0+ρ2U02=Ps+ρ2uθ2(R)Ps=P0+12ρU02(14sin2θ)

PX285 - K5a - potential flows involving cylinders and aerofoils-3.png

dS=(cosθ,sinθ)RdθFx=P(dS)x=02πPs(θ)Rcosθdθ=(P0+ρU022)R02πcosθdθ=0 Fy=02πPsRsinθdθ=0 |F|=0