PX285 - L2 - potential dipole

ur=ϕr=acosθr2uθ=ϕθ=asinθruz=ϕz=0u=acosθr2acosθr3=0

PX285 - K4 - potential dipole.png|500

(u)u=12u2u(×u)=12u2 ut+12u2=(ϕ˙+u22)=gz^1ρp(ϕ˙+u22+gz+pρ)=0ϕ˙+u22+gz+pρ=constant

PX285 - K4 - potential dipole-1.png|500

2ϕ=fxxf+gzzg=0fxxf=gxxg=k2fxx+k2f=0f=A1coskx+B1sinkxgzzk2g=0g=A2ekz+B2ekz ϕ=ϕ0cos(kxωt)(ekz+Bekz)ux=ϕx=kϕ0sin(kxωt)(ekz+Bekz)uz=ϕz=kϕ0cos(kxωt)(ekzBekz)uz(z=0)=01B=0B=1 X(t)=uxdt=kϕ0ωcos(kxωt)(ekz+ekz)+X0Z(t)=uzdt=kϕ0ωsin(kxωt)(ekzekz)+Z0(X(t)X0)2a(z)+(Z(t)Z0)2b(z)=1 a(z)=[kϕω(ekz+ekz)]2b(z)=[kϕω(ekzekz)]2 ekd+ekdekdekdekdekda(z)b(z) ek0+ek0=2ek0ek0=0a(0)b(0)

PX285 - K4 - potential dipole-3.png|500

ϕ˙+Patmρ+gz+u2z=constant ϕ˙(t)+gz(t)+Patmρ=constantϕ˙(t)+gz(t)=constant ωϕ0sin(kxωt)(ekd+ekd)+g[kϕ0ωsin(kxωt)(ekdekd)]=0ω2=gkekdekdekd+ekd=gktanh(kd) limkd0tanh(kd)kdωghkvp=ωk=ghvg=dωdk=gk limkdtanh(kd)=1ω=gkvp=ωk=gkλ1/2vg=dωdk=12gk