PX285 - G9 - triatomic molecule

the euler-lagrange equation and modes

Pasted image 20241205225850.png|500

T=12mOx1˙2+12mCx2˙2+12mOx3˙2V=12k(x2x1)2+12k(x3) M=(mO000mC000mO) K=(kk0k2kk0kk) (1)Mx¨=Kx ω2MAXeiωt=AKXeiωt Aeiωt[ω2MXKX]=0(ω2MK)X=0 det(ω2MK)=0|ω2mOkk0kω2mC2kk0kω2mOk|=0(ω2mOk)((ω2mC2k)(ω2mOk)k2)=0and k(k(ω2mOk)0)=0 (m0ω2k)ω2[ω2kγ]mOmC=0

where, γ=mOmC2mO+mC

ω(1)=kmOω(2)=0ω(3)=kγ

the first mode

b=0a=cX(1)=(abc)=a(101)

the second mode

(kk0k2kk0kk)(1ab)=0k(1a)=0a=1k(1+2ab)=0b=2a1=1k(a+b)=0a=bX(2)=(111) x(t)=(A(2)+B(2)t)(111)t

the third mode

\1\n\2\n