PX285 - G8 - diatomic molecule

Pasted image 20241205225803.png|500

V=12k(x2x1)2T=12mCx˙12+12mOx˙22

the inertia matrix

Mij=2Tx˙ix˙j M=(mC00mO)

the stiffness matrix

Kij=2Vxixj T=(kkkk)

the euler-lagrange equation in matrix form

(1)Mx¨=Kx x=AXeiωt ω2MX=KX(ω2MK)X=0 det(ω2MK)=0|mCω2kkkmOω2k|=0(mCω2k)(mOω2k)k2=0mCmO(ω2)2k(mC+m0)ω2=0either, mCmOω2k(mC+mO)=0or, ω2=0

the first mode

ω(1)=kmC+mOmCmO μ=mCmOmC+mOω(1)=kμ (M(ω(1))2K)X=0(mCkμkkkmOkμk)(ab)=0 (mCkμk)a+kbab=kkmCμ==m0mCa=m0,and b=mC

the second mode

(ω(2))2=0 ω=0τ=2πω x(t)=(A+Bt)(11)

where, A is the position at t=0, B is the velocity of translation, and the vector represents that both atoms are translating together