PX285 - G7 - example

Pasted image 20241129195231.png|500

the inertia and stiffness matrices

T=12mx˙12+12mx˙22 M=(2Tx˙122Tx˙1x˙22Tx˙2x˙12Tx˙22)=(m00m) V=12kx12+12k(x2x1)2+12(x2)2 K=(2Vx122Vx1x22Vx2x12Vx22)=(2kkk2k) Mx¨=Kx |2kω2mkk2kω2m|=(2kω2m)2k2=02kω2m=+kω(1)=km2kω2m=kω(3)=3km

first mode

B=Kω(1)M=(kkkk) (kkkk)X(1)=0

X(n)=(ab):

kakb=0ka+kb=0 a=b x(1)(t)=A(1)(11)exp(iωt)

Pasted image 20241129195252.png|500

second mode

B=Kω(2)M=(kkkk) (kkkk)X(2)=0

X(n)=(ab):

kakb=0kakb=0 a=b x(2)(t)=A(2)(11)exp(iωt)

Pasted image 20241129195308.png|500

general solution

x(t)=A(1)(11)exp(iωt)+A(2)(11)exp(iωt) x(0)=A(1)(11)+A(2)(11) x˙=iω(1)A(1)(11)exp(iω(1)t)+iω(2)A(2)(11)exp(iω(2)t)x˙(0)=iω(1)A(1)(11)+iω(2)A(2)(11) Im(iω(1)A(1))=δ,Im(A(2))=0,Re(A(1))=0,Re(A(2))=0x(0)=A(1)(11)+A(2)(11)=0x(t)=iδω(1)(11)exp(iω(1))=δω(1)(11)exp(iω(1)t+32π)