PX285 - G3 - derivation from examples

particle attached to a spring

L=12mx˙212kx2 mx¨=kxx¨=ω2x

where, ω=km

x=Acosωt+Bsinωt=Cexp(iωt)

two particles

x1=D1exp(iω1t)x2=D2exp(iω2t) m1x¨1=k1x1m2x¨2=k2x2 (m1x¨1m2x¨2)=(k1x1k2x2) (m100m2)(x¨1x¨2)=(k1x1k2x2) (k100k2)(x1x2)=(k1x1k2x2) Mx¨=Kx x(t)=(10)D1exp(iω1t)x(t)=(01)D2exp(iω2t) x(t)=(10)D1exp(iω1t)+(01)D2exp(iω2t)