PX285 - F5 - central forces - particle approaching the sun

determining the lagrangian

r(t)=r(t)(cosθ(t)sinθ(t)) v=r˙(cosθ(t)sinθ(t))+rθ˙(sinθ(t)cosθ(t))=r˙r^+rθ˙θ^ v2=vv=(r˙r^+rθ˙θ^)(r˙r^+rθ˙θ^)=r˙2+(rθ˙)2 T=12m(r˙2+(rθ˙)2) V=V(r) (1)L=12m(r˙2+(rθ˙)2)V(r)

formulating the euler-lagrange equations

(2)Lr˙=pr=mr˙(3)Lθ˙=pθ=mr2θ˙ (4)Lr=p˙r=mrθ˙2Vr(5)Lθ=p˙θ=0 ddt(mr˙)=mrθ˙2Vr(6)mr¨=pθ2mr3Vr=Veffr Veff=V+12pθ2mr2

the energy of the system

H=T+V=12m(r˙2+(rθ˙)2)+V(r)=12m(r˙2+pθ2m2r2)+V(r)(7)H(pr,pθ,r,θ)=12mpr2+12mr2pθ2+V(r)=E pr=(EV(r)12mr2pθ2)2m(8)pr=mr˙=2m(EVeff(r))

PX285 - F5 - central forces.png|500

determining the trajectory

dθdt=pθmr(t)2dθ=tpθmr(t)2dt(9)θθ0=0tpθmr(t)2dt mr¨=pθ2mr3Vr

[1] parameterization

ddt=dθdtddθ=pθmr2ddθ md2dt2r(t)=m(pθmr2ddθ)(pθmr2ddθ)r(θ)=pθ2mr3Vr pθ2mr3Vr=pθr2ddθ(pθmr2r)=pθr2[pθmr2r2pθmr3(r)2](10)pθ2mr3Vr=pθ2mr2[rr22r2r3]

[2] considering the inverse

u(θ)=1r(θ)u=ddθ(1r)=rr2u=ddθ(rr2)=rr2+2(r)2r3 (11)pθ2u3mVr=pθ2u2m[u] Vr=αr2=αu2 pθ2mu3αu2=pθ2mu2uu+αmpθ2=uu+u=αmpθ2=constant

solving the second-order inhomogeneous differential equation

(12)u+u=αmpθ2 u+u=0 uCF=ϵcos(θθ0)=Acosθ+Bsinθ uPI=αmpθ2 (13)u=uCF+uPI=ϵcos(θθ0)+αmpθ2

case 1

ϵ=0u=αmpθ2r=pθ2αm

PX285 - F5 - central forces-1.png|500

case 2

0<ϵ<mαpθ2

PX285 - F5 - central forces-2.png|500

umax=ϵ+mαpθ2rmin=1ϵ+mαpθ2umax=ϵ+mαpθ2rmin=1ϵ+mαpθ2

PX285 - F5 - central forces-3.png|500

case 3

ϵ>mαpθ2

PX285 - F5 - central forces-4.png|500

PX285 - F5 - central forces-5.png|500

case 4

ϵ=mαpθ2

PX285 - F5 - central forces-6.png|500