PX285 - F4 - gyroscope

spinning gyroscope.png|500

T=12Iω2

where, I=ml2 is the moment of inertia

determining the lagrangian

potential energy

kinetic energy

rotation axes.png|500

PX285 - F4 - a gyroscope3.png|500

ϕ˙sinθe^ϕ,(α˙+ϕ˙cosθ)e^αθ˙e^θ T=12Iθ˙2+12I(ϕ˙sinθ)2+12J(α˙+ϕ˙cosθ)2

where, J is the moment of inertia about the axis of the top, and I is that about the

the lagrangian

L=TV=12Iθ˙2+12I(ϕ˙sinθ)2+12J(α˙+ϕ˙cosθ)2mglcosθ

the euler-lagrange equation

Lqi=ddtLq˙i Lϕ=0=ddtpϕpϕ=Lϕ˙=Isin2θ+Jcosθ(α˙+ϕ˙cosθ)=constantLα=0=ddtpαpα=Lα˙=J(α˙+ϕ˙cosθ)=constant(1)pϕ=Isin2θϕ˙+cosθpα=constant Lθ=Isinθcosθϕ˙2Jϕ˙sinθ(α˙+ϕ˙cosθ)+mglsinθddtLθ˙=ddtIθ˙=Iθ¨Iθ¨=Isinθcosθϕ˙2Jϕ˙sinθ(α˙+ϕ˙cosθ)+mglsinθ=Isinθcosθϕ˙2ϕ˙sinθpα+mglsinθ ϕ˙=pϕcosθpαIsin2θIθ¨=Isinθcosθ(pϕcosθpαIsin2θ)2pαsinθ(pϕcosθpαIsin2θ)+mglsinθ=F(θ)