PX285 - E4 - rotation of space

L(r,v)L(r+δr,v+δv)=L(r,v)+δL L(r,v)=L(r+δr)δL=δrL+δvvL=(δϕ×r)L+(δϕ×v)vLvL=(LvxLvyLvz)=pL=(LxLyLz)=p˙δL=(δϕ×r)p˙+(δϕ×v)p=δϕ(r×p˙)+δϕ(v×p)=δϕ[r×p˙+v×p]=δϕ[r×p˙+r˙×p]=δϕddt(r×p) ddtM=ddt(r×p)=0

general case

L(x1,zn,x˙1,z˙n) δL=i=1N[(LxiLyiLzi)(δx1δy1δz1)+(Lx˙iLy˙iLz˙i)(δx˙1δy˙1δz˙1)] δL=i(pi˙δri+piδvi)=iδϕddt(ri×pi)=δϕddti(ri×pi)