PX285 - C6a - multi-coordinate problems

L(q1,q2,qd,q˙1,q˙2,q˙d) A=t0t1L(q1,q2,qd,q˙1,q˙2,q˙d)dt L(q1+a1,qd+ad,q˙1+a˙1,q˙d+a˙d)L(q1,qd,q˙1,q˙d)+smallL(q1,qd,q˙1,q˙d)+i=1dLqiai+i=1dLq˙ia˙i+ AA+δA=A+i=1dt0t1[Lqiai+Lq˙ia˙i]dt t0t1a˙iLq˙idt=[Lqiai]t0t1t0t1aiddtLq˙idt

- ai(t0)=ai(t1)=0i first term will be zero:
$$ \int_{t_{0}}^{t_{1}} \dot a_{i}\frac{\partial L}{\partial \dot q_{i}},dt = - \int_{t_{0}}^{t_{1}} a_{i} \frac{d}{dt} \frac{\partial L}{\partial \dot q_{i}},dt$$

δA=i=1dt0t1ai(t)[LqiddtLq˙i]dt=0 LqiddtLq˙i=0i