PX284 - Q4 - boundary conditions

PX284 - Q4 - boundary conditions.png|500

S×EdS=CEdl=S(Bt)dS=(E2,E1,)×L+O(d)

where, O(d) is the order of d, ie. it goes linearly with d

E2,E1,=0 n^×(E2E1)=0

where, n^ is the unit vector normal to the boundary

S×HdS=CHdl=S(Jf+Dt)dSn^×(H2H1)=0 n^×(H2H1)=jf

where, jf is the surface current density, with units A m1

PX284 - Q4 - boundary conditions-1.png|500

SBdS=(B1B2)A+O(h)=VBdV=0 B1=B2 SDdS=(D1D2)A+O(h)=VDdV=VρfdV=Qf

where, Qf is the charge enclosed

Qf=VρfdV+SσfdS

where, ρf is the volume charge density, and σf is the surface charge density

D1D2=σf

summarized

n^×(E2E1)=0n^(D1D2)=σfn^(B1B2)=0n^×(H2H1)=jf