PX284 - 0 - statistical mechanics, electromagnetic theory & optics

statistical mechanics

A - probability

PX284 - A1 - discrete probability distributions
PX284 - A2 - continuous probability distributions
PX284 - A3 - the bernoulli trial
PX284 - A4 - bayes' theorem

B - introduction

PX284 - B0 - approaches to thermal physics
PX284 - B1 - the system
PX284 - B2 - microstates and macrostates
PX284 - B3 - the assumptions
PX284 - B4 - ensembles

C - entropy and temperature

PX284 - C1a - boltzmann entropy formula
PX284 - C2 - temperature
PX284 - C3 - boltzmann distribution
PX284 - C4 - measuring entropy
PX284 - C5 - general definition of entropy

D - equipartition theorem

PX284 - D1 - equipartition theorem
PX284 - D2 - applications of the equipartition theorem

E - single-particle partition function

PX284 - E0 - solving problems in statistical mechanics
PX284 - E1a - functions of state
PX284 - E2 - two-level system (revisited)
PX284 - E3 - harmonic oscillator in 1D
PX284 - E4 - degeneracy
PX284 - E5b - combining partition functions
PX284 - E5b - harmonic oscillator in 3D
PX284 - E5c - spin-half paramagnet

F - connection between thermodynamics and statistical mechanics

PX284 - F1 - isolated system or microcanonical ensemble
PX284 - F2a - systems with fixed T and V or canonical ensemble
PX284 - F2b - aside on lagrange multipliers

G - fluctuations

PX284 - G1 - energy deviation
PX284 - G2 - large systems

H - gases

PX284 - H0 - introduction
PX284 - H1 - density of states (DOS)
PX284 - H2 - single-particle partition function
PX284 - H3 - distinguishability
PX284 - H4 - ideal gas
PX284 - H5 - gibbs paradox

I - chemical potential

PX284 - I1 - definition
PX284 - I2 - significance
PX284 - I3 - grand canonical ensemble
PX284 - I4 - conservation laws

J - photons

PX284 - J1 - blackbody radiation
PX284 - J2 - statistical mechanics of photons
PX284 - J3 - cosmic microwave background

K - phonons

PX284 - K1 - einstein model
PX284 - K2 - debye model

L - exchange symmetry

PX284 - L1 - exchange symmetry
PX284 - L2 - pauli exclusion principle
PX284 - L3 - distribution functions

M - fermions

PX284 - M1 - electron gas
PX284 - M2 - fermi energy
PX284 - M3 - degeneracy pressure
PX284 - M4 - heat capacity
PX284 - M5 - neutron stars

N - bosons

PX284 - N1 - recap
PX284 - N2 - boson gases
PX284 - N3 - bose-einstein condensation

electromagnetic theory

O - introduction to EMT

PX284 - O1 - required maths
PX284 - O2 - electric and magnetic fields
PX284 - O3 - charge
PX284 - O4 - maxwell's equations in differential form
PX284 - O5 - electrostatics

P - electromagnetic waves in free space

PX284 - P1 - introduction to EM waves
PX284 - P2 - energy in EM fields
PX284 - P3 - flux in EM waves

Q - maxwell's equations in matter

PX284 - Q1a - polarization
PX284 - Q1b - polarization of a slab
PX284 - Q2 - magnetization
PX284 - Q3 - maxwell's equations in matter
PX284 - Q4 - boundary conditions

R - dielectrics

PX284 - R1 - waves in dielectrics
PX284 - R2 - poynting vector

S - EM waves at boundaries

PX284 - S1 - snell's law
PX284 - S2a - fresnel relations
PX284 - S2b - brewster's angle
PX284 - S2c - total internal reflection
PX284 - S3a - conductors
PX284 - S3b - reflections on boundaries with metals

T - geometric optics

PX284 - T1 - wavefronts and rays
PX284 - T2 - fermat's principle
PX284 - T3a - imaging
PX284 - T3b - spherical surface using intersecting cords theorem
PX284 - T3c - spherical surface using trigonometric properties
PX284 - T4 - thin lens
PX284 - T5 - principal rays
PX284 - T6 - images
PX284 - T7 - telescopes

U - wave optics

PX284 - U1- resolution
PX284 - U2 - thin film interference
PX284 - U3 - fabry-perot interferometry