PX284 - L3 - distribution functions

Z=nexp(nβ(Eμ))

where, n is the occupation number, ie. the number of particles in the state, and μ is the chemical potential

n=nnexp(nβ(Eμ))Z=1βZZE=1βlnZE Z=1+exp(β(Eμ))lnZ=ln(1+exp(β(Eμ)))n=exp(β(Eμ))1+exp(β(Eμ))=1exp(β(Eμ))+1 Z=n=0exp(nβ(Eμ)) 0arn=11r Z=11exp(β(Eμ))lnZ=ln(1exp(β(Eμ)))n=exp(β(Eμ))1exp(β(Eμ))=1exp(β(Eμ))1 fFD(E)=1exp(β(Eμ))+1

fBE(E)=1exp(β(Eμ))1 N=0g(E)f(E)dE U=0Eg(E)f(E)dE