PX284 - E3 - harmonic oscillator in 1D

En=(n+12)ω Z=nexp(β(n+12)ω)=exp(βω2)nexp(βωn) anrn=a1r

with a=exp(βω/2) , and rexp(βω)

Z=exp(βω/2)1exp(βω)lnZ=βω2ln(1exp(βω)) U=dlnZdβ=ω[12+1exp(βω)1] CV=(UT)V=kB(βω)2exp(βω)(exp(βω)1)2 exp(βω)1+βωCVkB(βωβω)2=kB

PX284 - E3 - harmonic oscillator in 1D.png|100%
image: P. Goddard, lecture notes