PX284 - D2 - applications of the equipartition theorem

translational motion of a monatomic gas

E=12mvx2+12mvy2+12mvz2E=32kBT

mass on a spring

E=12kx2+12mx˙2E=kBT

two masses connected by a spring

E=12k(|r1r2|2)+12μ(r˙1r˙2)2+12(m1+m2)r˙COM2E=32kBT

where, μ=m1m2m1+m2

lattice vibrations

E=3kBT

diatomic molecules

PX154 - C9 - heat capacity of the ideal gas

E=12mvx2+12mvy2+12mvz2Etrans=32kBT EvibkBT Erot=12L12I1+12L22I2Erot=kBT

where, L is the angular momentum, I is the moment of inertia, and 1 and 2 represent rotation along the z and the y-axes respectively for a molecule along the x-axis

E=Etrans+Evib+Erot=32kBT+kBT+kBT=72kBT