PX282 - K2a - interiors of gas giants

dPdr=GMrρ(r)r2

where, Mr is the mass enclosed within radius, r

PKρ2

where, K is a constant, empirically obtained to be 2.7×105 N m4 kg2

PX282 - K2 - radius calculation.png|500
image: Stevenson 1982, AREPS 10, 257

dPdr=2Kρdρdr=GMrρr2r2dρdr=GMr2K dMr=4πr2ρ(r)drd2ρdr2+2rdρdr+2πGKρ=0ρ(r)=ρCsinkrkr

where, ρC= central density of the planet, k=2πG/K

sin(2πGKr)=0R=πK2G

PX282 - K2 - radius calculation-1.png|500
image: ESO 2002

M=0R4πr2ρ(r)dr=4πρck0Rrsinkrdr ρC=πM4R3

PX282 - K2 - interiors.png|500
image: Carroll & Ostile, An Introduction to Modern Astrophysics (2007)

PX282 - K2 - interiors-1.png|500
image: IESS, et al 2018

PX282 - K2 - interiors-3.png|500
PX282 - K2 - interiors-2.png|500
image: de Pater, et al 1997

uB=B22μ0uw=12ρwvw2 B(r)=μ02πμr3

where, μ is the magnetic dipole moment

μ0μ28π2r6=12ρwvw2Rm=(μ0ρw)1/6(μ2πvw)1/3

where, Rm is the radius of the magnetosphere

uB(μr3)2uw1a2μRm31aRm(μa)1/3

where, a is the orbital separation of the planet