PX275 - H9 - FT and differential equations

F(dfdx)=eikxdfdxdx=[eikxf(x)]++ikeikxf(x)dx F(dfdx)=ikeikxf(x)dx=ikf~(k) F(d2fdx2)=eikxd2fdx2dx=[eikxdfdx]+0+ikeikxdfdxdxikF(f(x))=ik(ikf~(k))=k2f~(k)
general formula for the FT of the nth derivative
F(dnfdxn)=(ik)nf~(k)

example

d2fdx2+αdfdx+βf(x)=g(x) k2f~(k)+αikf~(k)+βf~(k)=g~(k)(k2+αik +β)f~(k)=g~(k) f(x)=F1(f~(k))