PX275 - H7a - convolutions

fg(x)=f(y)g(xy)dy

convgaus.gif|500
image: Wolfram

fourier transform of a convolution

F(fg(x))=fg(x)eikxdx=f(y)g(xy)eikxdxdy g(xy)=12πg~(k)eik(xy)dk F(fg(x))=eikxf(y)12πg~(k)eik(xy)dkdxdy=12πeix(kk)dxf(y)g~(k)eikydkdy=δ(kk)f(y)g~(k)eikydkdy=f(y)g~(k)eikydy=g~(k)f(y)eikydyF(fg(x))=g~(k)f~(k) F(F(fg))=fgfg(x)=F1(f~(k)g~(k))=F1(g~(k)f~(k))=gf(x) F1(F(fg(x)))=F1(f~(k)g~(k))=12πeikxf~(k)g~(k)dk=12πeikxeikyf(y)dyg~(k)dk=f(y)12πeik(xy)g~(k)dkdy=f(y)g(xy)dy=fg(x)