PX275 - H4 - example of fourier transform

f~(k)=δ(xy)eikxdx=eiky f(x)=12πeik(xy)dk=δ(xy) δ(xy)=12πeik(xy)dkf~(x)=F(f(x))f(x)=F1(f~(x))f(x)=F1(F(f(x))) f(x)=12πf~(k)eikxdk=12πeikxdkF1(f~(k))f(x)eikxdxF(f(x))=12πeik(xx)f(x)dxdk=f(x)δ(xx)dx=f(x) f~(k)=1af(x)eikxdxf(x)=a2πf~(x)eikxdk F(δ(xy))=eikyF(δ(x))=1 f~(k)=eikxdx δ(q)=12πeikqdk=δ(q) δ(q)=12πeiqxdx2πδ(q)=eiqxdx eikxdx=2πδ(k) f(x)={0a<x<b,1elsewhere.f~(k)=abeikxdx=1ik[eikx]ab=1ik(eikbeika) f~(k)=1ik(eikbeikb)=2ksinkb=2bsinkbkb=2bsinckb

PX275 - H3 - fourier transforms.png
image: Georg-Johann