PX275 - H3 - fourier transforms

f(x)={k}Ckexp(ikx) δk=2πL limLδk0 Ck=1LL/2L/2f(x)eikxdx F(f(x))=f(x)eikxdx=f~(k)(=limLLCk) f(x)={k}Ckeikx={k}δkL2πCkeikx=12π{k}LCkeikxδk limL12π{k}LCkeikxδk=12πf~(k)eikxdk=f(x) f(x)=12πf~(k)eikxdk