PX275 - H10 - FT and PDEs

the wave equation

2ux2=1c22ut2u~(k)=eikxu(x)dxu~(ω)=eiωtu(t)dt u~(k,ω)=u~(k)=ei(kx+ωt)u(x,t)dxdt F(nfxn)=(ik)nf~(k)F(nftn)=(ik)nf~(ω) (ik)2u~(k,ω)=1c2(iω)2u~(k,ω)(ω2c2k2)u~(k,ω)=0 ω2=k2c2

the diffusion relation

ut=D2ux2 eikxutdx=Deikx2ux2dxteikxudx=Dk2u~u~t=Dk2u~ u~(k,t)=A~(k)eDk2t

where, A~(k) is an undetermined function of only k

u=12πeikxA~(k)eDk2t,dx u=12πeikxeDk2tdx f(x)=απeαx2f~(k)=ek2/4αu(x,t)=14πDtexp(x24Dt) u=F1(A~(k)G~(k,t))=AG(x,t) G=14πDtexp(x24Dt) u=AG=A(y)G(xy,t)dy u(x,0)=A(y)δ(xy)dy=A(x) u(x,t)=A(y)G(xy,t)dy=u(y,0)G(xy,t)dy