PX275 - H1 - complex fourier series

PX153 - J1 - introduction

f(x)=A02+n=1[Ancos(nπxL)+Bnsin(nπxL)] f(x)=A02+n=1[Ancos(2nπxL)+Bnsin(2nπxL)] cosθ=eiθ+eiθ2sinθ=eiθeiθ2i f(x)=A02+n=1[An12(ei2πnx/L+ei2πnx/L)+Bn12i(ei2πnx/Lei2πnx/L)]f(x)=A02+n=1[An12(eikx+eikx)+Bn12i(eikxeikx)]=A02+n=1[eikx(An2iBn2)+eikx(An2+iBn2)] f(x)=n=CneikxC0=A02n=0Cn=AniBn2n1Cn=An+iBn2n1 f(x)=n=Cneikxf(x)=n=Cneikx Cn=CnCn=Cn