PX275 - G9 - orthogonality relations

LLcos(nπxL)cos(mπxL)dx={Lif n=m,0if nmLLsin(nπxL)sin(mπxL)dx={Lif n=m,0if nmLLsin(nπxL)cos(mπxL)dx=0

kronecker delta

δnm={1if n=m,0if nm

application on the string

(1)u(x,0)=nsin(nπxL)Cn=f(x)(2)u(x,0)t=nsin(nπxL)DnnπxL=V0δ(xx0) 0Lf(x)sin(mπxL)dx=nCn0Lsin(nπxL)sin(mπxL)dx0Lf(x)sin(mπxL)dx=nCnδnmL22L0Lf(x)sin(mπxL)dx=Cm

initial velocity example 1

f(x)={2ϵLxfor 0xL2,2ϵL(Lx)for L2xL

PX275 - G9 - orthogonality relations-4.png|500

Cn=4ϵL20L/2xsin(nπxL)dx+4ϵL2L/2L(Lx)sin(nπxL)dx==8ϵsin(nπ/2)n2π2u(x,t)=n[8ϵsin(nπ/2)n2π2sin(nπxL)cos(nπctL)+Dnsin(nπxL)sin(nπctL)] ut(x,0)=0xut(x,0)=sin(nπxL)DnnπcLDn=0u(x,t)=n[8ϵsin(nπ/2)n2π2sin(nπxL)cos(nπctL)]ϵ/n2

PX275 - G9 - orthogonality relations.png|250 PX275 - G9 - orthogonality relations-1.png|250
image: A-M Broomhall, lecture notes

initial velocity example 2

ut(x,0)=nsin(nπxL)DnnπcL=V0δ(xx0)0Lnsin(nπxL)sin(mπxL)DnnπcLdx=0LV0δ(xx0)sin(mπxL)dxnDnnπcLδnmL2=V0sin(mπx0L)Dm=2V0cmπsin(mπx0L)

PX275 - G9 - orthogonality relations-2.png|250 PX275 - G9 - orthogonality relations-3.png|250
image: A-M Broomhall, lecture notes