PX275 - G8 - complex exponential form of solution in 3D

1D case

2ut2=c22ux2(Acoskx+Bsinkx)(Ccosωt+Dsinωt)Acoskx+Bsinkx=αcos(kx+ϕ)=βsin(kx+ϕ)

where, α,β are the amplitudes, and ϕ is the phase

Ceikx=C(coskx+isinkx)=|C|ei(kx+ϕ)

where, C=|C|eiϕ

u(x,t)=Cei(kxωt)=|C|ei(kxωt+ϕ) u(x,t)=C1ei(kxωt)+C2ei(kx+ωt)

generalizing to 3D

r=(x,y,z) 2u(r,t)t2=c22u(r,t)u(r,t)=C1exp(i(kxx+kyy+kzzωt))+C2exp(i(kxx+kyy+kzz+ωt)) k=(kx,ky,kz)u(r,t)=C1exp(i(krωt))+C2exp(i(kr+ωt))

where, ω2=c2|k|2