PX275 - G6 - boundary and initial conditions

initial conditions

boundary conditions

u(x,t)=(A0x+B0)(C0t+D0)+(Acoskx+Bsinkx)(Ccoskcx+Dsinkct) u(x,t)=(Acoskx+Bsinkx)(Ccoskcx+Dsinkct) u(0,t)=u(L,t)=0tu=Acos0+Bsin0=0A=0u=AcoskL+BsinkL=0BsinkL=0 u(x,t)=nBnsinkx(Cncosωt+Dnsinωt)

where, k=nπ/L and ω=kc=nπc/L


recap on fourier series

f(x)=a02+n=1(ancos(nπxL)+bnsin(nπxL)) f(x)=12LLLf(x)dx=a02
Cn=BnCnDn=BnDnu(x,t)=nsin(nπxL)(Cncos(nπctL)+Dnsin(nπctL))

PX275 - G6a - boundary and initial conditions-1.png|500