PX275 - F1 - tensors

L=Iω

where, I is the moment of inertia, and ω is the angular velocity

L=r×p=m(r×v) L=L1+L2 L=i=12ri×pi=i=12mi(ri×vi)$$$$L=i=12mi(ri×(ωi×ri)) ω×r=|i^j^k^ωxωyωzxyz|=(ωyzωzy)i^+(ωzxωxz)j^+(ωxyωyx)k^ r×(ω×r)=((y2+z2)ωx(xy)ωy(xz)ωz)i^+((xy)ωx+(x2+z2)ωy(yz)ωz)j^+((xz)ωx(yz)ωy+(x2+y2)ωz)k^ Lx=ωxIxx+ωyIxy+ωzIxzLy=ωxIyx+ωyIyy+ωzIyzLz=ωxIzx+ωyIzy+ωzIzz [LxLyLz]=[IxxIxyIxzIyxIyyIyzIzxIzyIzz][ωxωyωz] Lj=i=1,2,3Iijωj

where, L1=Lx, and so on

L1=(I11+I21+I31)ωx=Iijωx