PX275 - D3b - proof of green's theorem

Pydydx=x1x2y1y2Pydydx=x1x2[P(x,y2)P(x,y1)]dx=x1x2P(x,y1)dx+x2x1P(x,y2)dx

- this gives the integrals of the top and the bottom sections

Qx=y1y2Q(x2,y)dy+y2y1Q(x1,y)dy

- this gives the integrals of the sides

×F=(Fyx+Fxy)k^×FdA=Fdr ×E=Bt×EdA=loopEdlBtdA