PX275 - formula sheet

A

exact differentials

2fxy=2fyx

lagrange multipliers

B

centroid

x¯=1AreaxdAy¯=1AreaydAz¯=1AreazdA x¯=1VolxdVy¯=1VolydVz¯=1VolzdV

jacobian

J=(x,y,z)(u,v,w)=|xuxvxwyuyvywzuzvzw|

surface of revolution

A=s1s22πyds

where, ds=1+(dxdy)2dy

volumes of revolution

V=πx1x2(f(x))2dx

pappus' theorem

V=2πAy¯

where, A is the surface area, and y¯ is the centroid

A=2πy¯S

where, S is the area

D

conservative fields

green's theorem

CFdr=CPdxQdy=R(QxPy)dA=R(F)dA

divergence theorem (2D)

CFdn=RFdA

where, dn is the normal element, given by dyi^+dxj^

E

stokes' theorem

CFdr=S(×F)ds

divergence theorem (3D)

SFds=V(F)dV