PX262 - M3 - dirac notation

ϕ(x)ψ(x)dx=ϕ|ψ(ϕ|ψ)=ψ|ϕ ψ(x)A^ψ(x)dx=ψ|A|ψ A^|a=λa|a

where, state |a is labelled by its eigenvalue

a1|a2=δa1,a2 |ψ=aca|aca1=a1|ψ|ψ=a|aa|ψa|aa|=1 H^|ψ=iddt|ψ

where, the representation has not yet been specified

|ψ=a|aa|ψaH^|aa|ψ=ia|addta|ψa1|H^|aa|ψ=iaa1|addta|ψ aHa,aca(t)=iddtca1(t)(H11H12H21)(c1(t)c2(t))=iddt(c1c2) |ψ=c1|+c2| |H^|=E0H12=|H^|=A=H21H22=|H^|=E0(E0AAE0)(c1c2)=iddt(c1c2)E0c1+Ac2(t)=idc1dtAc1+E0c2(t)=idc2dt H^|n=En|n|ψ=ncn(t)|nand, cn(t)=n1|ψ|ψ=n|nn|ψnH^|nn|ψ=i|nddtn|ψnH^|ncn(t)=in|ndcndt nn1|H^|ncn(t)=inn1|ndcndtH^|n=En|nn1|H^|n=Enn1|n=Enδnn1En1cn1=idcn1dtcn1(t)=cn1(0)exp(iEn1t)|ψ(t)=ncn(0)|nexp(iEn1t)