PX262 - M2 - recap

iψt=H^ψ

where, H^ is the hamiltonian

H^ϕn(x)=Enϕn(x)

where, ϕn and En are the eigenfunctions and eigenvalues of the hamiltonian

ψ(x,t)=ncnϕn(x)exp(iEnt) A^ua(x)=λaua(x)ua1(x)ua2(x)dx=δa1,a2={1a1=a2,0a1a2. ca=ua(x)g(x)dx P(λa)=caca=|ca|2

where, ψ(x)=ncaua(x)

ψ(x)=aua(x)ψ(x)dxua(x) =acaua(x)ψ(x)dx=acaca=aP(λa)=1

vector space analogy

ca=ua(x)ψ(x)dx v=ivie^iψ(x)=acaua(x)