PX262 - K2 - reciprocal lattice and reciprocal space

f(x)=a0+n0(ancos(2πnxa)+bnsin(2πnxa)) f(x)=f(x+a)=f(x+2a)= F(x)=nFnexp(i2πnxa)=nFneiGnx

where, Fn=an+ibn, and Gn=2πn/a

Fn=1a0aF(x)exp(i2πnxa)dx Rn1n2n3=n1a+n2b+n3c A=2π(b×c)a(b×c)B=2π(c×a)a(b×c)C=2π(a×b)a(b×c) a=a(1,0,0)=ax^b=a(0,1,0)=ay^c=c(0,0,1)=cz^c>a Rn1,n2,n3=n1a+n2b+n3c Gh,k,l=hA+kB+lCexp(iGh,k,lRn1,n2,n3)=1A=2πaca2cx^=2πa(1,0,0)B=2πaca2cy^=2πa(0,1,0)C=2πa2a2cz^=2πc(0,0,1) G0,0,1=2πcz^