PX262 - H4 - free electron model (3D)

22m2ϕ(r)=Eϕ(r)ϕ=Aexp(i(kxx+kyy+kzz))E=2k22me=22me(kx2+ky2+kz2) ϕ(0,y,z)=ϕ(Lx,y,z)ϕ(x,0,z)=ϕ(x,Ly,z)ϕ(x,y,0)=ϕ(x,y,Lz) Aexp(i(kxLx+kyy+kyz))=Aexp(i(kyy+kzz))exp(ikxLx)=1 exp(ikyLy)=1exp(ikzLz)=1 k=(2πnxLx,2πnyLy,2πnzLz)

where, nx,ny,nzZ

PX262 - H4 - free electrons in 3D.png|500

ΔkxΔkyΔkz=8π3LxLyLz=8π3/V

PX262 - H4 - free electrons in 3D-1.png|500

N=2×Vol. of sphereVol. per k point=2×43πkF3V8π3=V3π2kF3

where, 2 is for each spin

kF=(3π2NV)1/3=(3π2ρe)1/3

where, ρe is the electron density

EF=22me(3π2ρe)2/3 vF=ω(k)=kme

density of states

N(E)=Vk33π2=V3π2(2meE2)3/2 n(E)dE=dNdEdE=32V3π2(2me2)3/2E1/2dE

ie. the density of states:

n(E)=V2π2(2me2)3/2E1/2 N=0EFn(E)dE=VαEF3/223 ETOT=0EFEn(E)dE=Vα0EFE3/2dE=Vα25EF5/2 ETOTN=35EF
ρe
(m3)
EF
(eV)
kF
1)
vF
(ms1)
Li 4.7×1028 4.74 1.12 1.29×106
Al 18.1×1028 11.7 1.75 2.05×106

temperatue

note: kBTEF4.7eV55000 K

PX262 - H4 - free electron model (3D).png|500

f(E,μ,T)=1expEμkBT+1

where, μ is the chemical potential

T=0N=0EFn(E)dEμ=EFT0N=0EFf(E,μ,T)n(E)dEμ=fixed

heat capacity

ETOT(T)=dEn(E)Ef(E,μ,T)=ETOT(0)+aT2+ CV=dETOTdT=2aT