PX262 - F4 - separation in spherical polar coordinates

the schrödinger equation

22m[1r2r(r2ϕr)+1r2sinθθ(sinθϕθ)(1)+1r2sin2θ2ϕφ2]+Vϕ=Eϕ

where, ϕ=ϕ(r,θ,ϕ)

22m[Yr2r(r2Rr)+Rr2sinθθ(sinθYθ)+Rr2sin2θ2Yφ2]+VRY=ERY(2)[22m1Rddr(r2dRdr)+r2Vr2E]22m[1Y1sinθθ(sinθYθ)+1Y1sin2θ2Yφ2]=0

the angular equation

22m[1sinθθ(sinθYθ)+1sin2θ2Yφ2]=λY 12mL^2Y=λY

the radial equation

22m1Rddr(r2dRdr)+r2V+l(l+1)22m=r2E(3)22m1r2ddr(r2dRdr)+[V(r)+l(l+1)22mr2]R=ER dRdr=ddr(χr)=1rdχdrχr2ddr(r2dRdr)=ddr(rdχdrχ)=rd2χdr2 22md2χdr2+[V(r)+22mr2l(l+1)]χ=Eχ