PX262 - E2 - eigenvalues and eigenfunctions

x=rsinθcosϕy=rsinθsinϕz=rcosθ=r^r+1rθ^θ+1rsinθϕ^ϕr^×r^=0θ^×r^=ϕ^ϕ^×r^=θ^ L^=ir^×=(ϕ^θ1sinθθ^ϕ)L^z=z^L^=iϕ L^2=2(r^×)(r^×)=2r^[×(r^×)]=2[1sinθθ(sinθθ)+1sin2θ2ϕ2] L^2Y=λYL^zY=νY iϕΘ(θ)Φ(ϕ)=νΘ(θ)Φ(ϕ)iΦ(ϕ)ϕ=νΦ(ϕ)

1=02πΦΦdϕ=C202πeimϕeimϕdϕ=C22πC=12π 2[1sinθθ(sinθθ)+1sin2θ2ϕ2]Θ(θ)Φ(ϕ)=λΘ(θ)Φ(ϕ)2[1sinθΦ(ϕ)θ(sinθΘ(θ)θ)+Θ(θ)sin2θ2Φ(ϕ)ϕ2]=λΘ(θ)Φ(ϕ)2[1sinθΦ(ϕ)θ(sinθΘ(θ)θ)+Θ(θ)sin2θ(m2Φ(ϕ))]=λΘ(θ)Φ(ϕ)2sinθddθ(sinθdΘ(θ)dθ)+2Θ(θ)m2λsin2θΘ(θ)=0

P(v)=p=0apvp P0(v)=1P1(v)=vP2(v)=12(3v21)P3(v)=12(5v33v) Pl|m|(v)=(1v2)|m|/2d|m|Pldv|m| |m|l L^zYl,m(θ,ϕ)=mYl,m(θ,ϕ)L^2Ylm(θ,ϕ)=2l(l+1)Ylm(θ,ϕ) Y00(θ,ϕ)=14πY10(θ,ϕ)=34πcosθY1±1(θ,ϕ)=38πsinθe±iϕY20(θ,ϕ)=516π(3cos2θ1)Y2±1(θ,ϕ)=158πcosθsinθe±iϕY2±2(θ,ϕ)=1532πsin2θe±2iϕ L^+=L^x+iL^yL^=L^xiL^yL^±Yl,m(θ,ϕ)=(lm)(l±m+1)Yl,m+1(θ,ϕ)

Pasted image 20241106211601.png
image: Q. Wang, K. Birod, C. Angioni, et al. PLoS ONE 6(7): e21554. https://doi.org/10.1371/journal.pone.0021554