PX262 - 0 - quantum mechanics

term 1

note on the source: the notes are heavily based on A. I. M. Rae, Quantum Mechanics, ed. 2 (Taylor & Francis, London, 2008)

A - recap

PX262 - A1 - photoelectric effect
PX262 - A2 - compton scattering
PX262 - A3 - line spectra
PX262 - A4 - bohr's model
PX262 - A5 - debroglie waves
PX262 - A6 - wave-particle duality
PX262 - A7 - the uncertainty principle

B - introduction

PX262 - B1 - the schrödinger equation
PX262 - B2 - time independent schrödinger equation
PX262 - B3 - boundary conditions
PX262 - B4 - particle in an infinite square well
PX262 - B5 - quantum tunnelling
PX262 - B6 - 1D harmonic oscillator

C - the basic postulates

PX262 - C1a - the wavefunction
PX262 - C1b - postulate 1
PX262 - C1c - example problem
PX262 - C2a - the dynamical variables
PX262 - C2b - momentum & position operator
PX262 - C2c - postulates 2 & 3
PX262 - C3 - orthonormality
PX262 - C4 - probability distributions
PX262 - C4b - postulate 4
PX262 - C4c - continuous variables
PX262 - C5 - expectation value
PX262 - C6a - commutation relations
PX262 - C6b - compatibility of operators
PX262 - C7a - the uncertainty principle
PX262 - C8 - postulate 5
PX262 - C9a - degeneracy
PX262 - C9b - schmidt orthogonalization
PX262 - C9c - compatibility of measurements
PX262 - C10 - the basic postulates

D - ladder operators and angular momentum

PX262 - D1 - ladder operators
PX262 - E1a - angular momentum operators
PX262 - E1b - compatibility
PX262 - E2 - eigenvalues and eigenfunctions

F - 3D systems

PX262 - F1 - the schrödinger equation in 3D
PX262 - F2a - particle in an infinite potential well
PX262 - F2b - degeneracy
PX262 - F3 - 3D harmonic oscillator
PX262 - F4 - separation in spherical polar coordinates
PX262 - F5 - particle in a spherical potential well
PX262 - F6 - hydrogen-like atoms
PX262 - F7 - properties of hydrogen-like atoms

G - additional interactions

PX262 - G1 - particle with angular momentum in magnetic field
PX262 - G2a - stern-gerlach experiment
PX262 - G2b - spin
PX262 - G3 - matrix representation
PX262 - G4 - pauli spin matrices
PX262 - G5 - multielectron atoms
PX262 - G6a - interactions of moments
PX262 - G6b - spin-orbit coupling
PX262 - G7b - strong-field zeeman effect
PX262 - G7a- pure spin-orbit coupling
PX262 - G7c - weak-field zeeman effect
PX262 - G8 - photon emission from atoms

term 2

H - free electron model

PX262 - H1 - current
PX262 - H2 - quantum mechanics and many particles
PX262 - H3 - free electron model (1D)
PX262 - H4 - free electron model (3D)
PX262 - H5 - metals in a magnetic field

I - nuclear matter

PX262 - I1 - nuclear matter and the liquid drop model
PX262 - I2 - implications for nature of nuclear forces
PX262 - I3 - liquid drop model of nucleus

J - atoms and molecules

PX262 - J1 - electrons in atoms and molecules
PX262 - J2 - electronic configurations
PX262 - J3 - molecules
PX262 - J4 - interacting electrons and nuclei in matter
PX262 - J5 - density functional theory

K - crystalline solids

PX262 - K1 - electrons in crystalline solids
PX262 - K2 - reciprocal lattice and reciprocal space
PX262 - K3 - wavevector space and brillouin zone
PX262 - K4 - electrons in crystalline solids
PX262 - K5 - block wavefunctions, electronic energy bands and gaps
PX262 - K6 - energy gaps

L - semiconductors

PX262 - L1 - introduction to semiconductors
PX262 - L2 - n- and p-type semiconductors
PX262 - L3 - p-n junction

M - basic principles revisited

PX262 - M1 - introduction to spin
PX262 - M2 - recap
PX262 - M3 - dirac notation

N - relativity and quantum mechanics

PX262 - N1 - klein-gordon equation
PX262 - N2 - dirac equation
PX262 - N3 - prediction of antiparticles