PX156 - J4 - two body collisions

mandelstam-s

s=(iEi)2|pic|2

interpretation of s

s=(E1+E2)2|p1c+p2c|2=(E12+E22+2E1E2)(|p1|2c2+|p2|2c2+2c2p1p2)=m12c4+m22c4+2E1E22c2p1p2=m12c4+m22c4+2E1E22c2|p1||p2|cos(πθ) s2E1E22E1E2cos(πθ) s=4E1E2 s=4E2s=2E s=(E1+m2c2)|p1c|2=E12+2E1m2c2+m22c4|p1c|2=m12c4+2E1m2c2+m2c4

- massless limit: s2E1m2c2
- or, sFT=2E1m2c2

p+pp+p+p+p¯

- to find: s in the COM system, where the minimum energy of the final state configuration is clear
- in the COM system, all final state protons are stationary
- s of the final state in the COM frame is: sCOM=(iEi)2=16mp2c4
$$\therefore \sqrt{s_{COM}} = 4 m_{p}c^{2}$$
- in the initial state of the fixed target system:

sFT=(E+mpc2)2|pc|2=2Empc2+2mp2c4

- if s is invariant: sCOM=sFT
$$E = 7 m_{p}c^{2}$$