PX155 - H5 - the twin paradox

not a paradox: proof

time event 1, x=0 event 2 x=L event 3 x=0
t 0 Lu 2Lu
t 0 γ(LuuLc2) 2γLu
t 0 γ(Lu+uLc2) 2γLu
ΔtB=(t2t1)+(t3t2)=2Lu

- alice:

ΔtA=(t2t1)+(t3t2)=2Lγu(1u2c2)=2Lγu=ΔtBγ

- γ>1 less times experienced by alice than by bob
- note: in frames S and S, Δt=γΔtB ; Δt=γΔtB

twin paradox by doppler shift

f1=f0γ(1+uc)

- for inbound frequency:

f2=f0γ(1uc)

- in frame S, bob receives last tick at f1 at time, Lc after it is emitted
- total ticks:

NB(A)=(Lu+Lc)f1+(LuLc)f2NB(A)=f0γ[Lu+Lc1+uc+LuLc1uc]NB(A)=f0γ(1u2c2)[(Lu+Lc)(1uc)+(LuLc)(1+uc)]NB(A)=f0γ(1u2c2)[2Lu2Luc2]NB(A)=2Luγ NA(A)=2Lγuf0