PX155 - E5 - moments

introduction

moment=F×dperp

- take moments about P: r1W1=r2W2 for balance

torque

\vec \tau = \vec r \times \vec F$$with dimensions $Nm$ - generalisation of turning moment to 3D ![Pasted image 20231104143249.png](/img/user/pics/Pasted%20image%2020231104143249.png) - perpendicular distance of line of action of $\vec F$ to point $O$ is $r\sin\theta$ - from the *right-hand rule*: $\vec\tau$ out of the page generating an anti-clockwise rotation of particle - like a moment, $\vec \tau$ must always be defined with respect to a point (of reference), not necessarily the centre of rotation ### derivation - what does a torque do? - from newton's second law: $\vec F = m \frac{d\vec v}{dt}$ $$\vec r \times \vec F = m (\vec r\times\frac{d\vec v}{dt})

- consider ddt(r×v)=drdt×v+r×dvdt
- drdt=v,drdt×v=0
$$\frac{d}{dt} (\vec r \times \vec v) = \vec r \times \frac{d\vec v}{dt}$$
- so,

r×F=mddt(r×v)=ddt(r×p)

- looks a lot like newton's second law , so, define L=r×p (kgm2s1), which is the angular momentum (moment of momentum)
$$\vec \tau = \vec r \times \vec F = \frac{d}{dt}\vec L$$