PX155 - classical mechanics - summary

A - foundations of classical mechanics

newton's laws

first law

second law

F=dpdt F=ma

third law

friction

static friction

Fs,max=μsN

kinetic friction

Fk=μkN

gravitation

newton's law of gravity

F12=Gm1m2r2r^

newton's shell theorem

B - systems of particles and acceleration

centre of mass

rcm=rdmdm;rdm=(xdm,ydm,zdm)

equations of motion

constant acceleration

a=dvdt:a0tdt=uvdvat=vuv=dxdt:0t(u+at)dt=0sdxs=ut+12at2v2u2=2as

time-dependent acceleration

0ta(t)dt=uvdv

position-dependent acceleration

a(x)=dvdt=dvdxdxdt0sa(x)dx=uvvdv=12(v2u2)

velocity-dependent acceleration

a(v)=dvdtuv1a(v)dv=t

C - work and energy

kinetic energy

KE=12mv2W=abFdx

conservative forces

Fdr=0W=ΔUΔKE+ΔU=0F=U

gravitational potential energy

Wab=GMm(1b1a)ΔU=W U(r)=GMmr ϕ=Um=GMr

power

P=dWdt=Fdrdt=Fv

D - simple harmonic moton

general equation

F=ma=kxx¨+ω2x=0;ω=kmx=Acosωt+Bsinωt ω=θtx=Acosθ+Bsinθx=Acos(ωt+ϕ)

where, A= amplitude, ϕ=phase angle

energy

W=12kx2:U=12kA2cos(ωt)KE=12mx˙2=12kA2sin2(ωt)Etot=12kA2

complex form

x=Re(Aeiθeiϕ)=Re(aeiωt)

where, a=Aeiϕ= complex amplitude
$$\ddot z + \omega^{2} z = 0$$

damped oscillations

mx¨+bx˙+kx=0x¨+γx˙+ω2x=0

where, b= damping coefficient, γ=bm
$$\ddot z + \gamma \dot z + \omega^{2}z =0$$
$$\lambda = - \frac{\gamma}{2}\pm \sqrt{\left(\frac{\gamma}{2}\right)^{2}-\omega^{2}}$$
Pasted image 20231113085521.png

light daming

γ<2ω:λ=γ2±iω,ω=ω2(γ2)2

heavy damping

γ>2ω:λ=γ2±ω,ω=ω2(γ2)2

critical damping

γ=2ω:λ=γ2

driven damped oscillations

mx¨+bx˙+kx=F0cos(ωt)z¨+γz˙+ω02z=F0meiωt a=Fm((ω02ω2)+iωγ)=|a|eiϕ|a|=Fm(ω02ω2)2(ωγ)2;tanϕ=γωω02ω2

E - circular motion, rotation of bodies

circular motion

angular velocity (ω)

ω=θ˙=2πTv=ω×r

centripetal acceleration

a=ωv=ω2r=v2ra=ar^

moments

moment=Fd

torque (τ)

τ=r×F

angular momentum

τ=dLdt L=r×p=r×mv|L|=mr2ω

orbital angular momentum

L=mR2ωGMmR2=mv2Rv=GMRτ=R×F=0[RF]dLdt=0

moment of inertia (I)

I=mr2ωL=Iω KE=12mr2ω2=12Iω2

for continuous rigid bodies

I=r2dm I=R202πRσdθ=2πR3σ=MR2 I=0R2πr3σdr=12πσR4=12MR2 I=23MR2 I=25MR2 I=112ML2 I=13ML2

parallel axis theorem

I=ICOM+md2