PX155 - C1 - work and kinetic energy

a(x)dx=vdv uvv.dv=12u2v2d(v2)=12[v2]u2v2

so,

a(x)dx=12d(v2) F(x)dx=12md(v2)=dT=ΔT

where, T=12mv2

W=FΔx dW=F(x)dx=dT

work in 3D

T=12m(vx2+vy2+vz2)

- so,

dW=dT

- so in 3D, T=1mvv=12m|v|2=12mv2
- where, v=|v|
- and,

W=Fdr=ΔT

- work done by F along a "slice" of the path dr:

dW=Fdr=Fcosθdr

- dW is the position of F along the path times an infinitesimal distance moved during that path