PX154 - F4 - wave groups and group velocity

dispersion

vpgλ

- we have, k=2πλ, vp=ωk
$$v_{p}= \frac{\omega}{k} \propto \sqrt{g .\frac{2\pi}{k}} \implies v_{p}= constant \times \sqrt{\frac{g}{k}}$$
- or, the "dispersion relation":
$$\omega(k) = constant \times \sqrt{gk}$$
- also, vg=dωdk=constant2gk
- so, vg=vp2
- these waves are dispersive:
- wave speed(vp) depends on k, hence wavelength
- vgvp

ω2=σρk3

where, σ= surface tension, ρ= density
2ωdωdk=3σρk2
vg=dωdk=32σρk
vp=ωk=σρk
vg=32vp
- waves are dispersive:
- vpk
- vgvp

(ω(k))2=c2k2+ωp2

where, wp= cyclotron frequency (a constant)
- find vp and vg
vp=ωk=c2+ωp2k2
vg=dωdk=2c2kc2k2+ωp2
- the waves are dispersive:
vpvg
vp depends on k
- any thing strange about vp?
- faster than the speed of light