PX154 - A2 - dimensions

we use dimensions to mean quantities from the SI system

quantities

quantities units dimension
length m L
mass kg M
time s T
temperature K θ
current A I
amount mol n
luminous intensity Cd C, J

luminous intensity is "visual effect of radiation"

angles

trigonometry

exponentials

ln(II0)=λt

might write this as:

ln(I)=λt+ln(I0)

dimensional analysis

T l g m N=4
Q1 Q2 Q3 Q4 -
constant=Tgl=Tg12l12 constant=Π=Q1αQ2βQ3γQ4δ

- *Π3.1415... but a convention to denote constants
- dimensions:
$$[\Pi] = [Q_1]^\alpha [Q_2]^\beta [Q_3]^\gamma [Q_4]^\delta$$
- for the pendulum:
$$[\Pi] = [T]^\alpha [l]^\beta [g]^\gamma [m]^\delta$$
$$[\Pi] = T^\alpha L^\beta {(LT^{-2})}^\gamma M^\delta$$
- LHS is dimensionless RHS is dimensionless too
$$= T^\alpha L^\beta L^{\gamma}T^{-2\gamma} M^\delta$$
- T: 0=α2γ
- L: 0=β+γ
- M: 0=δ
- we have simultaneous equations for the exponents
- we can choose a value for one of the unknowns:
let α=1
γ=+12
β=12
[π]=T1L12(LT2)12M0
π=Tg12l12=Tgl
$$[\Pi] = T^\alpha L^\beta {(LT^{-2})}^\gamma M^\delta$$
- T: 0=α2γ
- L: 0=β+γ
- M: 0=δ
- let α=2
γ=1
β=1
[π]=T2L1(LT2)1M0
[π]12=T1L12(LT2)12M0
π=Tg12l12=Tgl