PX153 - K7 - matrix inverse

some definitions

det[e1e2e3f1f2f3g1g2g3]=det[f1f2f3e1e2e3g1g2g3]=f1c21+f2c22+f3c23

- switching row 1 and row 2 is equivalent to expanding from the 2ndrow

ja2jc1j=f1c11+f2c12+f3c13=f(f×g)=0

- in general, detA=0 if two rows are the same

the adjugate matrix

Adj(A)=[c11cn1c1ncnn]

the inverse

A1=1detAAdj(A) Bij=k=1naik(Adj(A))kj=k=1naikcjk={detAifi=jcofactorrule0ifijfalsecofactorrule AAdj(A)=detAIA1=1detAAdj(A)ifdetA0 AdjAA=[542115221][102113021]=[900090009]=9Ior,|A|=9A1=19A Adj(A)=[(1003)(30+12)(68)(15+1)(54)(1+12)(920)(3+6)(2018)]=[10342741611311938]Adj(A)A=|A|IAdj(A)A=[10342741611311938][1643201135]=[155000155000155]=155[100010001]x=A1bx=1|A|Adj(A)bx=1155[10342741611311938][8123]=[1012]