PX153 - K4 - row-reduced echelon form (gaussian elimination)

x1+2x1=3L1x1+x2=7L2L1L1:x1+2x1=3L2L2L1:x2=4L1L1+2L2:x1=11L2L2:x1x2=7 a11x1+a12x2++a1nxn=b1L1a21x1+a22x2++a2nxn=b2L2am1x1+am2x2++amnxn=bmLm Ax=b 2x1+x2+x3=13x1+(x2)2x3=1

- L1L12 ; L2L2:

[211|1312|1]

- L1L1 ; L2L23L1:

[11/21/2|1/205/27/2|1/2]

- L1L1 ; L225L2:

[11/21/2|1/2017/5|1/5]

- L1L112L2 ; L2L2:

[1012(175)|12(115)017/5|1/5]x1+15x3=25x2+75x3=15

- setting x3=λ, solution set:

[x1x2x3]=[2515λ1575λλ] x12x2+x3=12x1+x2+x3=15x2x3=1[121|1211|1051|1]

- L2L22L1:

[121|1051|1051|1]

- L3L3L2:

[121|1051|1000|0]

- L215L2:

[121|10115|15]

- L1L1+2L2:

[1035|350115|15][x1x2x3]=[35(1λ)15(λ1)λ] αx1+βx2=aL1αx1+βx2=bL2

- only consistent if a=b

αx1+βx2+γx3=aP1αx1+βx2+γx3=bP2

- if there are three equations with one linearly independent from the others, they can be parallel planes