PX153 - K13 - additional properties

(AB)T=BTAT

- proof:

(AB)ikT=jakjbji=jajkTbijT=(BTAT)ik yTy=βyx=0

- if vectors are normalized, β=1
- for hermitian matrices (A=A):
- eigenvalues are always real
- if λiλj,ij: then eigenvectors are all orthogonal
- if λi=λj,ij: then orthogonal eigenvectors as long as detA0
- proof:
- consider a hermitian matrix, A, with a distinct eigenvalue, λi, such that λiλj,ij

Axi=λixi

- taking the hermitian conjugate of the equation:

(Axi)=(λixi)xiA=λixixiA=λixi

- multiplying by xj (from the right):

xiAxj=λixixjxiλjxj=λixixj(λjλi)(xixj)=0

- if ij:xixj=0, giving the definition of orthogonality
- if i=j:λi=λiλiRe

- if the eigenvalues are degenerate, ie: λi=λj,ij, orthogonal eigenvectors can still be constructed