PX153 - K12 - eigenvectors and eigenvalues

finding eigenvalues and eigenvectors

Ax=λxAxλx=0(AIλ)x=0Cx=0 A(αxi)=Axi=(λxi)=λ(αxi) A=[4132]

AλI=[4λ132λ]
$$\begin{align*}
\det(A-\lambda,I) &= \lambda^{2}- 6\lambda + 5 = 0 \
\lambda_{1}= 5&, ;\lambda_{2}=1
\end{align*}$$
- taking λ2=1:

(AλI)x=0[3131][x1x2]=[00]3x1+x2=0letx1=t,x2=3t

- the eigen vector is: t[13] , t is a free parameter
- normalizing:

xTx=1t2(1+9)=1t=110

- the normalized eigenvector is: 110[13]

- taking λ2=5:

(AλI)x=0[1133][x1x2]=[00]either,x1+x2=0or,3x13x2=0letx1=t,x2=t

- the eigen vector is: t[11] , t is a free parameter
- normalizing:

xTx=1t2(1+1)=1t=12

- the normalized eigenvector is: 12[11]

- checking:

[4132]12[11]=12[55]=52[11]

- 5 is the eigenvalue, 12[11] is the eigenvector